A Safer Way to Make Metal Nanoscale Spheres for Calibrating Surface Inspection Instruments

Jul 16, 2004

Tiny surface defects that form during processing can reduce the quality and yield of semiconductor devices, magnetic storage media, and other products. Inspection tools that locate, identify, and characterize surface defects based upon how they reflect or scatter light need to be calibrated with accurate particle size standards in order to work properly. Making metallic standards for such calibrations is typically a hazardous process, but researchers at the National Institute of Standards and Technology (NIST) and the University of Maryland have invented a safer method and apparatus for producing these standards.

Nanoscale spheres typically are used as size standards for calibrating surface inspection instruments. NIST produces a number of Standard Reference Materials (SRMs) used by the semiconductor industry for calibration purposes, including SRM 1963, which consists of 100 nanometer (nm) polystyrene spheres. The new method produces uniformly sized metal nanospheres, which might be used to determine, for example, whether surface inspection systems can differentiate metal contaminants from other defects.

The new method, patented earlier this year and licensed to MSP Corp., makes spheres 50 nm to 300 nm in diameter out of copper, nickel, cobalt, and other metals. The method involves generating aerosol droplets of a solution in an inert gas, and heating the droplets to form metal particles. The solution contains a metal compound, water, and a solvent such as methanol or ethanol. By contrast, the best of current production technologies use hydrogen gas as the solvent, posing a risk of fire or explosion.

The new method resulted from NIST efforts to develop and validate theoretical models for light scattering by polystyrene spheres. Because it is more difficult to predict light scattering by metal spheres than by polystyrene spheres, scientists validated their theories by making metal particles and measuring how they scattered light. This ensured that the models would be highly accurate for polystyrene. Scientists used metal particles made with the new method to validate their theories under a number of conditions and published several papers on the results. For example, they found that oxides grow on the particles at room temperature and limit their useful life as light scattering standards to only a few months.* This increases the value of having a safer way to generate the particles, because laboratories that use them may need to generate new batches of nanospheres on a regular basis.

* J.H. Kim, S.H. Ehrman, and T.A. Germer, “Influence of particle oxide coating on light scattering by submicron metal particles on silicon wafers,” Appl. Phys. Lett. 84, 1278, Feb. 23, 2004.

Source: www.nist.gov/

Explore further: Nano-capsules designed for diagnosing malignant tumours

Related Stories

New model sheds light on 'flocking' behaviour

7 hours ago

Understanding how turbulence can alter the shape and course of a flock of birds, a swarm of insects or even an algal bloom could help us to better predict their impact on the environment.

What shape is the universe?

May 12, 2015

The universe. It's the only home we've ever known. Thanks to its intrinsic physical laws, the known constants of nature, and the heavy-metal-spewing fireballs known as supernovae we are little tiny beings ...

A metal composite that will (literally) float your boat

May 12, 2015

Researchers have demonstrated a new metal matrix composite that is so light that it can float on water. A boat made of such lightweight composites will not sink despite damage to its structure. The new material ...

Recommended for you

Nanosilver and the future of antibiotics

37 minutes ago

Precious metals like silver and gold have biomedical properties that have been used for centuries, but how do these materials effectively combat the likes of cancer and bacteria without contaminating the ...

Researchers first to create a single-molecule diode

May 25, 2015

Under the direction of Latha Venkataraman, associate professor of applied physics at Columbia Engineering, researchers have designed a new technique to create a single-molecule diode, and, in doing so, they ...

Engineering phase changes in nanoparticle arrays

May 25, 2015

Scientists at the U.S. Department of Energy's Brookhaven National Laboratory have just taken a big step toward the goal of engineering dynamic nanomaterials whose structure and associated properties can be ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.