Quantum dot-based assays to offer new ways to understand cell biology

July 7, 2004

Evident Technologies and Upstate announced that they have signed an agreement to produce quantum dot-based products for the life science industry under an agreement signed today. Terms and conditions of the agreement have not been disclosed.

Upstate, the leader in innovative cell signaling products for life science research and drug discovery, will be using EviTags, Evident's proprietary fluorescent nanocrystals to produce new forms of quantum dot-based conjugates offering increased photo-stability and multicolor fluorescence. EviTags are available in wavelengths from blue through the visible spectrum and into the near infrared. Evident is a pioneer in the development of advanced nanomaterials and a leading commercial source for a wide range of quantum dot material systems.

“We are excited by the prospect of EviTags and are pleased to be working with this new form of quantum dot nanobiotechnology. We believe that EviTags offer many advantages to understanding
cells that will be very important for our research and biotech industry customers,” said Sheridan G.
Snyder, Chairman and CEO of Upstate. “Evident Technologies' new quantum dot technology, combined with our cell signaling capabilities may lead to many new ways to conduct cell research.”

“We are looking forward to working with Upstate, the leader in many innovative and advanced cell
signaling products, using our EviTags. Conjugating proteins to quantum dots offer distinct advantages over traditional organic fluorophores, including greatly improved photostability, color multiplexing, and single-source excitation,” said Clinton Ballinger, Ph.D., CEO of Evident Technologies, “With these attributes, researchers can perform more tests, see more detail within cells and the freedom to perform long-term imaging.”

Quantum dot conjugates are the next stage in the evolution of biotechnology research tools and offer improved photostability, single source optical excitation, and a multiplicity of tunable narrow-band emission colors that span the visible and infrared spectrum. With these attributes, researchers can perform more tests, see more details in cells and have freedom to perform long-term imaging.

The original press release can be found here.

Related Stories

Recommended for you

Stressed out plants send animal-like signals

July 29, 2015

University of Adelaide research has shown for the first time that, despite not having a nervous system, plants use signals normally associated with animals when they encounter stress.

Wireless charging tech for metal case devices announced

July 29, 2015

Power up without plugging in—that has been the catchy slogan of Qualcomm's WiPower and now WiPower has reached a milestone: power up without plugging in even if the mobile device has a metal case. Qualcomm took center-stage ...

Japanese team fires world's most powerful laser

July 29, 2015

(Phys.org)—A team of researchers and engineers at Japan's Osaka University is reporting that they have successfully fired what they are claiming is the world's most powerful laser. In their paper published in the journal ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.