Cryo-electron Microscope with 1,000,000-times Magnification Offers New Challenges

Jul 27, 2004
Cryo-electron Microscope with 1,000,000-times Magnification Offers New Challenges

If you think your new digital camera is special with it’s 10-times zoom lens think how the people at The University of Queensland feel with their cryo-electron microscope that can get 1,000,000-times magnification.

The microscope is the centrepiece of UQ’s new Advanced Cryo-Electron Microscopy Facility, launched today, making the laboratory equal to any in the world.

The Facility, part of UQ’s Centre for Microscopy and Microanalysis (CMM), forms the Queensland node of Nanostructural Analysis Network Organisation (NANO), a $11.2 million federally funded project linking microscopy centres around the country.

NANO’s aim is to provide advanced capabilities for the characterisation and manipulation of matter at the atomic and molecular level.

Professor John Drennan, Director of the CMM and Chair of the NANO Scientific Panel, said the Facility, to be housed at UQ’s Institute for Molecular Bioscience, would aid research in many different fields.

“With this Facility we join an exclusive group of centres around the world with these capabilities,” Professor Drennan said.

“Projects presently being undertaken include obtaining a three dimensional picture of pancreatic cells involved in insulin production; the structure of molecules associated with photosynthesis and the possible production of hydrogen; and the internal structure of porous materials associated with catalysts.”

He said the cryo-electron microscope, which was partially funded by the State Government who put forward $1.5 million, would allow scientists to investigate structures to atomic resolution of a range of active biological entities

“To understand the interactions which control our health, the transmission of diseases, and even define our thought processes, we need to know the structure of the molecules – in other words where each atom group is,” Professor Drennan said.

“To do this we need to isolate the molecule and image it at magnifications (200,000-times) that allow us to see the atomic arrangements.

“This is not a simple matter as the molecules that sustain life are sensitive, easily destroyed and are usually only stable in a water rich environment.

“Here the cryo-electron microscope comes into its own.

“With the capability of obtaining magnifications from 10,000 to a million-times, the instruments can easily resolve all the features we need to examine.”

He also said the revolutionary technology of cryogenically cooling the sample, as developed by UQ researcher Associate Professor Alasdair McDowall and colleagues, would allow researchers to examine the material in its native state and with the minimum of damage.

The Facility was officially opened by Mrs Linda Lavarch, Parliamentary Secretary to the Minister for State Development and Innovation.

Source: University of Queensland

Explore further: Physicist's Nobel Prize up for auction, $325,000 to start

Related Stories

Q&A: Why are antibiotics used in livestock?

11 hours ago

Wal-Mart, the world's biggest retailer, is the latest company to ask its suppliers to curb the use of antibiotics in farm animals. Here's a rundown of what's driving the decision: ...

Recommended for you

Scientists one step closer to mimicking gamma-ray bursts

4 hours ago

Using ever more energetic lasers, Lawrence Livermore researchers have produced a record high number of electron-positron pairs, opening exciting opportunities to study extreme astrophysical processes, such ...

Physicists solve quantum tunneling mystery

6 hours ago

An international team of scientists studying ultrafast physics have solved a mystery of quantum mechanics, and found that quantum tunneling is an instantaneous process.

How spacetime is built by quantum entanglement

6 hours ago

A collaboration of physicists and a mathematician has made a significant step toward unifying general relativity and quantum mechanics by explaining how spacetime emerges from quantum entanglement in a more ...

Experiment confirms quantum theory weirdness

6 hours ago

The bizarre nature of reality as laid out by quantum theory has survived another test, with scientists performing a famous experiment and proving that reality does not exist until it is measured.

Quantum computer emulated by a classical system

7 hours ago

(Phys.org)—Quantum computers are inherently different from their classical counterparts because they involve quantum phenomena, such as superposition and entanglement, which do not exist in classical digital ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.