Breakthrough in Wireless Devices Makes Earpieces Size Cell Phones Closer To Reality

July 20, 2004

James Bond-style technologies such as cell phones the size of earpieces and invisible sensors sprinkled about to detect toxins are closer to reality.
University of Michigan researchers have figured out how to build wireless systems even smaller while still retaining range and power efficiency.
One obstacle to further shrink small wireless devices has been trying to fit all the components onto one chip but U-M researchers have built a tiny silicon-compatible antenna and frequency resonator that will do just that.

The antenna and resonator are two of the most problematic off-chip components in wireless systems. The two components require large amounts of space off the chip—think of a cell phone antenna extending outward—thus limiting how small a device can be built.

Until now, small antennas weren't power efficient and resonators were not accurate, said Kamal Sarabandi, director of the radiation laboratory in electrical engineering and computer science (EECS). His research group developed the antenna.

The technology is being developed for use in environmental sensors, but could be applied to cell phones, laptops and other wireless devices, said Michael Flynn, head of the wireless interface group.

"We could have cell phones almost the size of an earpiece," Flynn said. "You could have sensor nodes that are almost invisible, you could just sprinkle them around."

Rather than using a traditional wire antenna, researchers built a slot antenna. In a slot antenna, instead of the metal wire, imagine covering an entire plane with metal, leaving only a slot or groove in the metal bare. Wire surrounds the groove so it’s much more effective at radiating electromagnetic waves in a small antenna, Sarabandi said. Because of the antenna’s shape, the wireless system does not need a network to match the antenna’s frequency to the rest of the electronic device.

Sarabandi’s group has been talking with Intel about a possible collaboration. Intel is interested in using the technology in laptop computers, Sarabandi said.

The second component U-M scientists replaced is the quartz frequency resonator, which allows a wireless device to focus on a specific signal and ignore others. The work was done by EECS Prof. Clark Nguyen’s group.

Instead of quartz, U-M scientists used MEMS-based technology to build the resonator so it can be fitted onto the chip. It functions similarly to how the rim of a wine glass thrums when flicked by a finger. The wine-glass rim design helps retain the purity of the signal.

Source: University of Michigan

Explore further: The new wave in wireless communication

Related Stories

The new wave in wireless communication

November 3, 2015

While cat videos, memes and the various other clips and images shared via the Internet provide endless hours of viewing pleasure, they are creating a stress on conventional wireless networks. They produce a huge demand for ...

Microwave field imaging using diamond and vapor cells

November 10, 2015

Microwave field imaging is becoming increasingly important, as microwaves play an essential role in modern communications technology and can also be used in medical diagnostics. Researchers from the Swiss Nanoscience Institute ...

Wireless charging and discharging for electric vehicles

September 1, 2015

In the future, a wireless charging system will allow electric cars not only to charge their batteries, but also to feed energy back into the power grid, helping to stabilize it. The cost-effective charging system achieves ...

NY town enacts tough cell tower limits

September 23, 2010

(AP) -- A Long Island township has imposed restrictions on the placement of new cell towers that are among the toughest in the country, and one phone company says it effectively bans new construction.

Recommended for you


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.