Zinc Oxide Nanostructures: Growth, Properties and Applications

Jun 26, 2004
Nanobelt

An article of the same name recently published by Dr. Zhong Lin Wang in the Journal of Physics: Condensed Matter reviews various nanostructures of ZnO grown by the solid–vapour phase technique and their corresponding growth mechanisms. He also demonstrates the application of ZnO nanobelts as nanosensors, nanocantilevers, field effect transistors and nanoresonators.

Zinc oxide is a unique material that exhibits semiconducting and piezoelectric dual properties.

ZnO has a long history of usage for pigments and protective coatings on metals. The electrical, optoelectronic and photochemical properties of undoped ZnO has resulted in use for solar cells, transparent electrodes and blue/UV light emitting devices. In the past decade, numerous studies have been made on both production and application of one-dimensional ZnO.

ZnO nanomaterials are promising candidates for nanoelectronic and photonics. Compared with other semiconductor materials, ZnO has higher exciton binding engery(60 meV), is more resistant to radiation, and is multifunctional with uses in the areas as a piezoelectric, ferroelectric and ferromagnetic. ZnO-based semiconductor and nanowire devices are also promising for the integration on a single chip. So far, the various applications of ZnO nano materials such as biosensors, UV detectors and FED are under way.

Dr. Zhong Lin Wang, director of Georgia Tech's Center for Nanoscience and Nanotechnology, Atlanta reports that using a solid–vapour phase thermal sublimation technique, nanocombs, nanorings, nanohelixes/nanosprings, nanobelts, nanowires and nanocages of ZnO have been synthesized under specific growth conditions. He also summarizes the various growth morphologies and proposes their growth processes.

These unique nanostructures unambiguously demonstrate that ZnO probably has the richest family of nanostructures among all materials, both in structures and in properties. The nanostructures could have novel applications in optoelectronics, sensors, transducers and biomedical sciences.

The nanobelts and relevant nanostructures are a unique group that is likely to have important applications in nanosize electronic, optical, sensor and optoelectronic devices.
The latest breakthroughs is the success of first piezoelectric nanobelts and nanorings for applications as sensors, transducers and actuators in micro- and nano-electromechanical systems, which was published in Science this year (Science, 303 (2004) 1348 ).

Find more about Zhong Lin Wang’s group at www.nanoscience.gatech.edu/zlwang/index.htm

The article J. Phys.: Condens. Matter 16 (2004) R829–R858 can be found here: www.iop.org/EJ/abstract/0953-8984/16/25/R01

Explore further: Two-dimensional material seems to disappear, but doesn't

Related Stories

Dinosaur-times cockroach caught in amber, from Myanmar

11 hours ago

Geologica Carpathica has a paper on a new family of predatory cockroaches. Predatory? The authors, Peter Vrsansky and Günter Bechly, from the Slovak Republic and Germany, respectively, said that "unique adapta ...

Comcast must show what's next after collapse of deal

11 hours ago

Comcast, which reports financial results on Monday, faces some tough questions about what's next for the country's biggest cable company after its dreams of a far-reaching network collapsed with the death of its $45 billion ...

Japan eyeing 26% greenhouse gas cut: officials

11 hours ago

Japan is planning to pledge a 26 percent cut in its greenhouse gas emissions from 2013 levels, ahead of a global summit on climate change this year, officials said Friday.

Auditors: National Science Foundation suspends UConn grants

11 hours ago

The National Science Foundation has frozen more than $2 million in grants to the University of Connecticut after a foundation investigation found two professors used grant money to buy products from their own company, Connecticut ...

Recommended for you

A better way to build DNA scaffolds

7 hours ago

Imagine taking strands of DNA - the material in our cells that determines how we look and function - and using it to build tiny structures that can deliver drugs to targets within the body or take electronic ...

Nanotechnology used to make watch case

11 hours ago

It's one thing to take a Swiss watch to Switzerland, quite another to impress the locals. Australian company Bausele recently did just that, thanks to some clever thinking at Flinders University in South ...

Researchers exploring spintronics in graphene

12 hours ago

Electronics is based on the manipulation of electrons and other charge carriers, but in addition to charge, electrons possess a property known as spin. When spin is manipulated with magnetic and electric ...

Two-dimensional material seems to disappear, but doesn't

May 05, 2015

(Phys.org)—When exposed to air, a luminescent 2D material called molybdenum telluride (MoTe2) appears to decompose within a couple days, losing its optical contrast and becoming virtually transparent. But when s ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.