New STM Microscope To Study Propeties of Electron Spin

Jun 23, 2004

University of Arkansas scientists seek to harness an electron's spin to create tiny machines with large memories. To do this, they have built a microscope that may allow them to be the first researchers to measure the properties of electron spin injection in conducting materials.

Electrons have spin in addition to charge, but in the past this property has been little used or studied. By understanding and using the different states achieved when an electron's spin rotates, researchers could potentially increase information storage a million fold. This would allow vast quantites of information to be stored in a space the size of a sugar cube or transmitted from one tiny device to another in the blink of an eye.

Today's transistors store information by using two different states to save data or create words on the computer. Each bit in a given piece of information-a word or a computer program-can either be "on" or "off," meaning that the possibilities are based on two, or binary logic. However, the different states created when an electron's spin rotates could allow researchers to increase that base number from two to 10. This would create massive information storage and transmission capabilities.

Paul Thibado, associate professor of physics, won a $370,000 grant from the National Science Foundation to measure the properties of a spin-based transistor using a customized, two-tip Scanning Tunneling Microscope (STM) system. This work builds on a previous NSF grant of $760,000, which was used to create the customized STM.

Researchers currently use STMs to inject electrons of a certain spin into a conducting material. However, they have not been able to study what happens to the electrons as they pass through the material because they would need a second STM to create a transistor, a miniature electronic switch used to power televisions, cars, radios, home appliances and computers. A traditional transistor consists of a source, a drain and a gate. When an electric field is placed on the gate, current moves from the source to the drain. Placing two STM tips next to one another won't work-the tips remain too far apart to create a transistor.

Thibado and his colleagues proposed building a different kind of instrument, one with two STMs placed at right angles to one another. This allows the tips to get close enough-about 10 nanometers apart-to create an effective detection device. Thibado and his colleagues will use one tip to inject electrons of a certain spin into a surface, while the other acts as a detection device, reading the actual spin of the injected electrons. By applying a magnetic field, the researchers can then change the electrons' spins, creating a field-effect transistor.

First, however, the researchers must learn more about how spin works, and Thibado's new equipment will allow that to happen. The UA team will use the modified instruments to measure the current and voltage properties of a spin-dependent transistor, examine the characteristics of the transistor at different temperatures and change the distance between the two STMs to determine the device's effectiveness at various distances. They also will use different materials on the tip of the STMs to determine how they affect the transistor's properties.

More information at advancement.uark.edu/

Explore further: New 'designer carbon' boosts battery performance

Related Stories

EPA says first day of oil spill spent 'planning'

4 hours ago

On the afternoon of the largest coastal oil spill in California in 25 years, graduate student Natalie Phares quickly organized a volunteer bucket brigade to clean a beach north of Santa Barbara.

Insect mating behavior has lessons for drones

4 hours ago

Male moths locate females by navigating along the latter's pheromone (odor) plume, often flying hundreds of meters to do so. Two strategies are involved to accomplish this: males must find the outer envelope ...

Recommended for you

New 'designer carbon' boosts battery performance

May 29, 2015

Stanford University scientists have created a new carbon material that significantly boosts the performance of energy-storage technologies. Their results are featured on the cover of the journal ACS Central Sc ...

Self-replicating nanostructures made from DNA

May 28, 2015

(Phys.org)—Is it possible to engineer self-replicating nanomaterials? It could be if we borrow nature's building blocks. DNA is a self-replicating molecule where its component parts, nucleotides, have specific ...

Could computers reach light speed?

May 28, 2015

Light waves trapped on a metal's surface travel nearly as fast as light through the air, and new research at Pacific Northwest National Laboratory shows these waves, called surface plasmons, travel far enough ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.