Researchers study how ice melts in contact with soil

June 19, 2004
Sketch of the experimental setup

A team of scientists from the Max Planck Institute for Metals Research in Stuttgart (Germany) and the ESRF in France has studied how ice starts to melt at temperatures as low as - 17ºC. This can occur when ice is in contact with SiO2, a material commonly found in soil. Below the melting temperature of ice, a layer much denser than ‘regular’ water forms between the ice and the SiO2. The researchers were able to observe such changes occurring thanks to the powerful X-rays at the ESRF. These results may help to explain natural phenomena such as how glaciers slide or the stability of permafrost. The results of this study have just been published in Physical Review Letters.

Water is well known for its strange properties such as its expansion during the transition from liquid to solid. At school, students learn that the density of water is 1 g/cm3. This is somewhat of an over simplification, however, due to the complex behaviour and relationships between water molecules. In reality water is thought to exhibit density fluctuations between a high-density liquid (HDL) and a low-density liquid (LDL) on very short time scales.

The team of scientists working at the ESRF discovered an odd water layer thanks to the high-energy X-ray microbeams of the synchrotron. They started by attaching crystalline ice onto silicon dioxide. The 24 mm long sample was kept in a specially-designed chamber in which the temperature of the sample could be stabilised and accurately controlled. As the X-rays penetrated the sample to the interface between water and silicon dioxide, the researchers started heating it from -25ºC to 0ºC. By the time the structure reached the melting point, the sample already contained a 5 nm layer of water. This water was found to be 20% more compact than normal water, having a density of 1.2 g/cm3.

These results represent a step forward in understanding the behaviour of ice. They may help explain natural processes such as the movement of glaciers. The motion of glaciers can mainly be explained by the internal deformation induced by gravity, (being relatively slow at around only 10 m/year). Another process which is thought to contribute to this movement is basal sliding. Basal sliding can occur ten times faster when the base of the ice is near the melting point and some water is present to enhance glacier movement. Nevertheless, observing the results of the experiment performed at the ESRF, this pre-melting phase at a lower temperature than the melting point could support a basal sliding theory.

The ramifications of this study are not only confined to glaciers. Permafrost is another example where a lower melting temperature could further our understanding. Permafrost describes rock or soil composite structures that remain below 0ºC for two or more years and often contain more than 30% ice. Permafrost areas cover large inhabited regions, yet the interfacial-melting phenomenon is not well understood. The results confirmed by the team of researchers at the ESRF could be important for civil engineering projects within these regions.

The results of this experiment open the way for new research: “we will study how the ice behaves in contact with different solids instead of silicon dioxide”, explains Veijo Honkimäki, one of the authors of the paper.

Source of this news release: EUROPEAN SYNCHROTRON RADIATION FACILITY

Publication: S. Engemann et al. Interfacial melting of ice in contact with SiO2, PHYSICAL REVIEW LETTERS, 92, 205701 (2004).

Explore further: Rethinking the computer game as a teaching tool

Related Stories

Rethinking the computer game as a teaching tool

August 23, 2015

Christian Varona didn't rely on textbooks and slideshows to learn history. When it came to studying for daunting Advanced Placement tests, he didn't turn to a tutor, either.

Seeing Antarctica's future more clearly

August 20, 2015

Do you love to lose yourself in little things? To read every footnote of a book, watch ants in a patch of grass, memorise every mole on a lover's skin?

What is A dwarf planet?

August 18, 2015

The term dwarf planet has been tossed around a lot in recent years. As part of a three-way categorization of bodies orbiting the sun, the term was adopted in 2006 due to the discovery of objects beyond the orbit of Neptune ...

The dwarf planet Haumea

August 14, 2015

The Trans-Neptunian region has become a veritable treasure trove of discoveries in recent years. Since 2003, the dwarf planets and "plutoids" of Eris, Sedna, Makemake, Quaoar, and Orcus were all observed beyond the orbit ...

Methane, water enshroud nearby Jupiter-like exoplanet

August 13, 2015

The Gemini Planet Imager has discovered and photographed its first planet, a methane-enshrouded gas giant much like Jupiter that may hold the key to understanding how large planets form in the swirling accretion disks around ...

Recommended for you

Male seahorse and human pregnancies remarkably alike

September 1, 2015

Their pregnancies are carried by the males but, when it comes to breeding, seahorses have more in common with humans than previously thought, new research from the University of Sydney reveals.

Brazilian wasp venom kills cancer cells by opening them up

September 1, 2015

The social wasp Polybia paulista protects itself against predators by producing venom known to contain a powerful cancer-fighting ingredient. A Biophysical Journal study published September 1 reveals exactly how the venom's ...

Parasitized bees are self-medicating in the wild, study finds

September 1, 2015

Bumblebees infected with a common intestinal parasite are drawn to flowers whose nectar and pollen have a medicinal effect, a Dartmouth-led study shows. The findings suggest that plant chemistry could help combat the decline ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.