Superconductivity in diamond

April 10, 2004

As well as holding pride of place as the most sought-after of all precious gemstones, diamond possesses a dazzling array of technologically useful properties. As well as being the hardest, most thermally conducting, and chemically resistant of all known materials it is also biocompatible, highly transparent and of great interest for use in the electronics industry. And now, to top it all off, Evgeni Ekimov and colleagues report in Nature, that under the correct conditions, it can also become a superconductor.

The diamonds they used were grown by the conventional industrial technique of subjecting graphite to high pressure and temperature, but to make it electrically conducting they added 2.8% of boron during growth, which contributes positive charge carriers (holes) to the material.

Authors report the discovery of superconductivity in boron-doped diamond synthesized at high pressure (nearly 100,000 atmospheres) and temperature (2,500–2,800 K). Electrical resistivity, magnetic susceptibility, specific heat and field-dependent resistance measurements show that boron-doped diamond is a bulk, type-II superconductor below the superconducting transition temperature Tc 4 K; superconductivity survives in a magnetic field up to Hc2(0) 3.5 T. The discovery of superconductivity in diamond-structured carbon suggests that Si and Ge, which also form in the diamond structure, may similarly exhibit superconductivity under the appropriate conditions.

Explore further: New temperature record: Hydrogen sulfide becomes superconductive under high pressure at minus 70 degrees Celsius

Related Stories

Researchers set new temperature record for a superconductor

August 19, 2015

(—A combined team of researchers from the Max Planck Institute and Johannes Gutenberg-Universität Mainz has set a new warmth record for a superconductor. In their paper published in the journal Nature, the team ...

Colored diamonds are a superconductor's best friend

March 6, 2014

( —Flawed but colorful diamonds are among the most sensitive detectors of magnetic fields known today, allowing physicists to explore the minuscule magnetic fields in metals, exotic materials and even human tissue.

Squashing Silane into Metal

January 9, 2009

( -- Squeeze it hard enough and hydrogen, the most abundant and lightest element in our Universe, strangely takes on a metallic nature. During this state, as it loses hold of its electrons, hydrogen is believed ...

Recommended for you

Climate scientist hits out at IPCC projections

October 13, 2015

As a new chairman is appointed to the Intergovernmental Panel on climate Change (IPCC) a University of Manchester climate expert has said headline projections from the organisation about future warming are 'wildly over optimistic.'

The culinary habits of the Stonehenge builders

October 13, 2015

A team of archaeologists at the University of York have revealed new insights into cuisine choices and eating habits at Durrington Walls – a Late Neolithic monument and settlement site thought to be the residence for the ...

A particle purely made of nuclear force

October 13, 2015

Scientists at TU Wien (Vienna) have calculated that the meson f0(1710) could be a very special particle – the long-sought-after glueball, a particle composed of pure force.

Dead comets and near-earth encounters

October 13, 2015

Near Earth Objects (NEOs) are asteroids or comets whose orbits sometimes bring them close to the Earth, thereby posing a potentially threat. The asteroid that struck Chelyabinsk last year was an NEO about 40 meters in diameter. ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.