Superconductivity in diamond

April 10, 2004
diamond

As well as holding pride of place as the most sought-after of all precious gemstones, diamond possesses a dazzling array of technologically useful properties. As well as being the hardest, most thermally conducting, and chemically resistant of all known materials it is also biocompatible, highly transparent and of great interest for use in the electronics industry. And now, to top it all off, Evgeni Ekimov and colleagues report in Nature, that under the correct conditions, it can also become a superconductor.

The diamonds they used were grown by the conventional industrial technique of subjecting graphite to high pressure and temperature, but to make it electrically conducting they added 2.8% of boron during growth, which contributes positive charge carriers (holes) to the material.

Authors report the discovery of superconductivity in boron-doped diamond synthesized at high pressure (nearly 100,000 atmospheres) and temperature (2,500–2,800 K). Electrical resistivity, magnetic susceptibility, specific heat and field-dependent resistance measurements show that boron-doped diamond is a bulk, type-II superconductor below the superconducting transition temperature Tc 4 K; superconductivity survives in a magnetic field up to Hc2(0) 3.5 T. The discovery of superconductivity in diamond-structured carbon suggests that Si and Ge, which also form in the diamond structure, may similarly exhibit superconductivity under the appropriate conditions.

Explore further: Unraveling the crystal structure of a record high-temperature superconductor

Related Stories

New material could advance superconductivity

July 28, 2016

Scientists have looked for different ways to force hydrogen into a metallic state for decades. A metallic state of hydrogen is a holy grail for materials science because it could be used for superconductors, materials that ...

Colored diamonds are a superconductor's best friend

March 6, 2014

(Phys.org) —Flawed but colorful diamonds are among the most sensitive detectors of magnetic fields known today, allowing physicists to explore the minuscule magnetic fields in metals, exotic materials and even human tissue.

Recommended for you

Smarter brains are blood-thirsty brains

August 30, 2016

A University of Adelaide-led project has overturned the theory that the evolution of human intelligence was simply related to the size of the brain—but rather linked more closely to the supply of blood to the brain.

Theorists solve a long-standing fundamental problem

August 30, 2016

Trying to understand a system of atoms is like herding gnats - the individual atoms are never at rest and are constantly moving and interacting. When it comes to trying to model the properties and behavior of these kinds ...

Reconstructing the sixth century plague from a victim

August 30, 2016

Before the infamous Black Death, the first great plague epidemic was the Justinian plague, which, over the course of two centuries, wiped out up to an estimated 50 million (15 percent) of the world's population throughout ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.