Scientists devise method to study membrane proteins

Apr 14, 2004

Scientists at the University of Virginia Health System have come up with a protocol to extract proteins from membranes by using chemicals that allow them to be reversibly folded and refolded. The proteins can then be studied using crystallography or nuclear magnetic resonance imaging. Their work is detailed in the March 23 issue of the “Proceedings of the National Academy of Sciences” (PNAS) and also on the cover of the journal. The paper can be found on the web at: http://www.pnas.org/cgi/content/full/101/12/4065.

“The majority of drugs on the market today are effective because they work on membrane proteins, but our basic knowledge about these proteins lags far behind that of water-soluble proteins,” said Lukas Tamm, professor of molecular physiology and biological physics at U.Va. “We need to develop systems to get enough of these membrane proteins expressed in a cell culture so we can measure their thermodynamic, or energetic, stability,” Tamm said. “This is of practical interest in designing proteins for therapeutic applications because the proteins need to be kept around for a long time. This protocol developed at U.Va. shows for the first time that these proteins can be taken out of their membrane environment and put back in without losing function,” Tamm said. “We also found that the thermodynamic stability, or energy difference, between the folded and unfolded form of membrane proteins depends on the strength of the membrane “rubber band” that the proteins sit in. This energy difference can be predicted, one key variable in the drug discovery process.”

In a commentary on the findings, also in the March 23 issue of PNAS, James Bowie, a professor with the Molecular Biology Institute at the University of California, Los Angeles, wrote that “the new work opens another door to a more quantitative description of the energetics protein-protein and protein-lipid interactions in the (membrane) bilayer… We are finally beginning to obtain quantitative information about membrane protein structure.”

Working with U.Va. colleague Heedeok Hong, Tamm used an aqueous (water) system and a compound called urea, that unravels proteins, to carry out folding studies on a membrane protein of the Escherichia coli bacterium called OmpA. Tamm and Hong demonstrated that the folding of OmpA into the lipid bilayers of a membrane is a reversible, two-state process. They also demonstrated that elastic forces in bilayers, such as curvature stress, can affect the folding of membrane proteins.


Explore further: What's fair?: New theory on income inequality

Related Stories

Say Freeze: Photogs do 365-gigapixel sweep of Mont Blanc

1 hour ago

Mont Blanc is the highest mountain in the Alps and has taken on an added distinction as the subject of the world's largest photograph. The Telegraph reported Monday that a photography team accomplished a worl ...

Blueprint for a thirsty world from Down Under

3 hours ago

The Millennium Drought in southeastern Australia forced Greater Melbourne, a city of 4.3 million people, to successfully implement innovations that hold critical lessons for water-stressed regions around the world, according ...

Recommended for you

What's fair?: New theory on income inequality

1 hour ago

The increasing inequality in income and wealth in recent years, together with excessive pay packages of CEOs in the U.S. and abroad, is of growing concern, especially to policy makers. Income inequality was ...

Scientists one step closer to mimicking gamma-ray bursts

7 hours ago

Using ever more energetic lasers, Lawrence Livermore researchers have produced a record high number of electron-positron pairs, opening exciting opportunities to study extreme astrophysical processes, such ...

Physicists solve quantum tunneling mystery

9 hours ago

An international team of scientists studying ultrafast physics have solved a mystery of quantum mechanics, and found that quantum tunneling is an instantaneous process.

How spacetime is built by quantum entanglement

10 hours ago

A collaboration of physicists and a mathematician has made a significant step toward unifying general relativity and quantum mechanics by explaining how spacetime emerges from quantum entanglement in a more ...

Experiment confirms quantum theory weirdness

10 hours ago

The bizarre nature of reality as laid out by quantum theory has survived another test, with scientists performing a famous experiment and proving that reality does not exist until it is measured.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.