Quarks take wrong turns

April 13, 2004

Physicists peering inside the neutron are seeing glimmers of what appears to be an impossible situation. The vexing findings pertain to quarks, which are the main components of neutrons and protons. The quarks, in essence, spin like tops, as do the neutrons and protons themselves.
Now, experimenters at the Thomas Jefferson National Accelerator Facility in Newport News, Va., have found hints that a single quark can briefly hog most of the energy residing in a neutron, yet spin in the direction opposite to that of the neutron itself, says Science News

"That's very disturbing," comments theoretical physicist Xiangdong Ji of the University of Maryland at College Park.

The finding suggests that scientists may have erred in calculations using fundamental theory to predict quark behavior within neutrons, he says. It might also indicate that orbital motions of particles within neutrons, in addition to those particles' spins, are more important than previously recognized. Those motions might be akin to the moon's rotation around Earth as the satellite also spins about its own axis.

Given that neutrons and protons are sister particles, called nucleons, the new findings apply to both, says Xiaochao Zheng, a member of the experimental team who's now at Argonne (Ill.) National Laboratory.

Nucleons are the building blocks of atomic nuclei. A typical nucleon includes three quarks: two down quarks and one up quark for a neutron; two up quarks and one down quark for a proton. In addition to those so-called valence quarks, each nucleon contains multitudes of gluons—particles that bind quarks—and of short-lived quark-antiquark pairs, known collectively as the quark sea.

Each of these constituents of a nucleon carries some share of the nucleon's energy, although the distribution of that energy among the constituents constantly shifts, Ji explains.

From previous experiments, scientists knew that only valence quarks can grab major portions of a nucleon's total energy content, says Jian-Ping Chen of the Jefferson lab, a coleader of the experiment. The new spin-detecting experiment is the first to measure the state of the neutron when most of its energy momentarily resides in a single quark.

Calculations based on the prevailing theory of quark behavior predict that any quark holding more than about half the energy of a nucleon should spin in the same direction as the nucleon. However, when the new experiment probed valence quarks temporarily laden with up to 60 percent of a neutron's energy, it revealed that only the up quarks behaved as expected. The down quarks somehow carried most of the energy yet rotated in a direction opposite to that of the neutron as a whole.

Electrons and entire atoms also have spins. To arrive at the new findings, the experimenters made a target of helium gas in which nearly all atoms were forced to spin in the same direction and bombarded it with a beam of high-energy electrons, whose spins were also forced to have uniform orientations.

The researchers determined the spin orientations of the quarks in the helium atoms by placing detectors in specific positions where they are more likely to make detections when the orientations of the electron's spin and the quark's spin are opposite, Zheng says. She and her colleagues present their results in the Jan. 9 Physical Review Letters.

Explore further: Simulations show swirling rings, whirlpool-like structure in subatomic 'soup'

Related Stories

Simple math, antimatter, and the birth of the Universe

September 15, 2016

If x2 = 4, then what is x? Did you just think "2"? Is that correct? Well, yes and no. The fact that there is a parallel but equally valid answer that x is negative 2 has been a difficult and intriguing conundrum to everyone ...

The secret lives of long-lived particles

October 3, 2016

The universe is unbalanced. Gravity is tremendously weak. But the weak force, which allows particles to interact and transform, is enormously strong. The mass of the Higgs boson is suspiciously petite. And the catalog of ...

Recommended for you

Giant radio flare of Cygnus X-3 detected by astronomers

December 7, 2016

(Phys.org)—Russian astronomers have recently observed a giant radio flare from a strong X-ray binary source known as Cygnus X-3 (Cyg X-3 for short). The flare occurred after more than five years of quiescence of this source. ...

Blocks of ice demonstrate levitated and directed motion

December 7, 2016

Resembling the Leidenfrost effect seen in rapidly boiling water droplets, a disk of ice becomes highly mobile due to a levitating layer of water between it and the smooth surface on which it rests and melts. The otherwise ...

Cosmic dust found in city rooftop gutters

December 7, 2016

(Phys.org)—A small team of researchers with Imperial College London, the Natural History Museum in London, Project Stardust in Norway and Université Libre de Bruxelles in Belgium, has found samples of cosmic dust in the ...

New evidence for a warmer and wetter early Mars

December 7, 2016

A recent study from ESA's Mars Express and NASA's Mars Reconnaissance Orbiter (MRO) provides new evidence for a warm young Mars that hosted water across a geologically long timescale, rather than in short episodic bursts ...

Fossils of early tetrapods unearthed in Scotland

December 7, 2016

(Phys.org)—A team of researchers working at a dig site in Scotland has found tetrapod fossils dated to approximately 15 million years after the Devonian mass extinction—a time period experts in the field have referred ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.