Physicists move closer to the quantum limit

April 12, 2004

A new experiment in the US has come close to detecting quantum effects in a macroscopic object. Keith Schwab and colleagues from the National Security Agency (NSA) working at the University of Maryland have measured the vibrations of a tiny nanoelectromechanical arm to probe the limits at which quantum behaviour breaks down and classical physics takes over. Although the experiment was not quite sensitive enough to test the uncertainty principle, it has come closer to doing so than previous attempts (M D LaHaye et al. 2004 Science 304 74).

The uncertainty principle states that we cannot simultaneously know both the position and velocity of a particle with complete certainty. The principle is used to describe the motion of particles at the atomic level, but has thus far not been observed in the behaviour of macroscopic objects. Such behaviour is described by classical physics.

To find out whether or not the uncertainty principle extends up to the macroscopic world, Schwab and colleagues studied the motion of a vibrating mechanical arm made from silicon nitride. At just 8 microns (8x10-6m) long, the arm is tiny by everyday standards but still macroscopic (having the mass equivalent to 1012 hydrogen atoms).

The researchers positioned the arm about 600 nanometres away from a single-electron transistor - which acts as a motion detector - and coupled the two together via a capacitor. They then applied a voltage to make the arm vibrate and cooled the system down to a few millikelvin. Cooling the system to such low temperatures reduced thermal vibrations close to the point where just "zero-point" quantum fluctuations remain. This zero-point motion results from the uncertainty principle, which prevents the arm from remaining completely at rest.

As the arm moved towards the detector, and then away from it, the amount of current flowing through the transistor changed. By measuring this current, the physicists were able to measure the displacement of the arm with a sensitivity that is only about a factor of 4.3 larger than the amplitude of zero-point fluctuations.

The NSA physicists now plan to increase the sensitivity of the detector and further reduce thermal vibrations in the arm. They also hope to extend their study to larger objects. "These experiments address a deep mystery in physics: where does the quantum world stop and the classical world begin?" Schwab told. "Success at manipulating the quantum state of a mechanical device would suggest that there is no boundary and encourage us to pursue even larger objects."

Schwab says his team would like to exploit the system for quantum computing applications.

Explore further: Traveling without moving: Quantum communication scheme transfers quantum states without transmitting physical particles

Related Stories

Soundproofing with quantum physics

July 2, 2015

Sebastian Huber and his colleagues show that the road from abstract theory to practical applications needn't always be very long. Their mechanical implementation of a quantum mechanical phenomenon could soon be used for soundproofing ...

Quantum measurement precision approaches Heisenberg limit

February 26, 2010

( -- In the classical world, scientists can make measurements with a degree of accuracy that is restricted only by technical limitations. At the fundamental level, however, measurement precision is limited by ...

Quantum reality more complex than previously thought

October 28, 2013

Imagine you order a delivery of several glass vases in different colors. Each vase is sent as a separate parcel. What would you think of the courier if the parcels arrive apparently undamaged, yet when you open them, it turns ...

Recommended for you


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.