Physicists move closer to the quantum limit

April 12, 2004

A new experiment in the US has come close to detecting quantum effects in a macroscopic object. Keith Schwab and colleagues from the National Security Agency (NSA) working at the University of Maryland have measured the vibrations of a tiny nanoelectromechanical arm to probe the limits at which quantum behaviour breaks down and classical physics takes over. Although the experiment was not quite sensitive enough to test the uncertainty principle, it has come closer to doing so than previous attempts (M D LaHaye et al. 2004 Science 304 74).

The uncertainty principle states that we cannot simultaneously know both the position and velocity of a particle with complete certainty. The principle is used to describe the motion of particles at the atomic level, but has thus far not been observed in the behaviour of macroscopic objects. Such behaviour is described by classical physics.

To find out whether or not the uncertainty principle extends up to the macroscopic world, Schwab and colleagues studied the motion of a vibrating mechanical arm made from silicon nitride. At just 8 microns (8x10-6m) long, the arm is tiny by everyday standards but still macroscopic (having the mass equivalent to 1012 hydrogen atoms).

The researchers positioned the arm about 600 nanometres away from a single-electron transistor - which acts as a motion detector - and coupled the two together via a capacitor. They then applied a voltage to make the arm vibrate and cooled the system down to a few millikelvin. Cooling the system to such low temperatures reduced thermal vibrations close to the point where just "zero-point" quantum fluctuations remain. This zero-point motion results from the uncertainty principle, which prevents the arm from remaining completely at rest.

As the arm moved towards the detector, and then away from it, the amount of current flowing through the transistor changed. By measuring this current, the physicists were able to measure the displacement of the arm with a sensitivity that is only about a factor of 4.3 larger than the amplitude of zero-point fluctuations.

The NSA physicists now plan to increase the sensitivity of the detector and further reduce thermal vibrations in the arm. They also hope to extend their study to larger objects. "These experiments address a deep mystery in physics: where does the quantum world stop and the classical world begin?" Schwab told. "Success at manipulating the quantum state of a mechanical device would suggest that there is no boundary and encourage us to pursue even larger objects."

Schwab says his team would like to exploit the system for quantum computing applications.

Explore further: Soundproofing with quantum physics

Related Stories

Soundproofing with quantum physics

July 2, 2015

Sebastian Huber and his colleagues show that the road from abstract theory to practical applications needn't always be very long. Their mechanical implementation of a quantum mechanical phenomenon could soon be used for soundproofing ...

Scientific instruments of Rosetta's Philae lander

September 23, 2014

When traveling to far off lands, one packs carefully. What you carry must be comprehensive but not so much that it is a burden. And once you arrive, you must be prepared to do something extraordinary to make the long journey ...

Recommended for you

How bees naturally vaccinate their babies

July 31, 2015

When it comes to vaccinating their babies, bees don't have a choice—they naturally immunize their offspring against specific diseases found in their environments. And now for the first time, scientists have discovered how ...

A cataclysmic event of a certain age

July 27, 2015

At the end of the Pleistocene period, approximately 12,800 years ago—give or take a few centuries—a cosmic impact triggered an abrupt cooling episode that earth scientists refer to as the Younger Dryas.

New blow for 'supersymmetry' physics theory

July 27, 2015

In a new blow for the futuristic "supersymmetry" theory of the universe's basic anatomy, experts reported fresh evidence Monday of subatomic activity consistent with the mainstream Standard Model of particle physics.

Dense star clusters shown to be binary black hole factories

July 29, 2015

The coalescence of two black holes—a very violent and exotic event—is one of the most sought-after observations of modern astronomy. But, as these mergers emit no light of any kind, finding such elusive events has been ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.