Physicists move closer to the quantum limit

Apr 12, 2004

A new experiment in the US has come close to detecting quantum effects in a macroscopic object. Keith Schwab and colleagues from the National Security Agency (NSA) working at the University of Maryland have measured the vibrations of a tiny nanoelectromechanical arm to probe the limits at which quantum behaviour breaks down and classical physics takes over. Although the experiment was not quite sensitive enough to test the uncertainty principle, it has come closer to doing so than previous attempts (M D LaHaye et al. 2004 Science 304 74).

The uncertainty principle states that we cannot simultaneously know both the position and velocity of a particle with complete certainty. The principle is used to describe the motion of particles at the atomic level, but has thus far not been observed in the behaviour of macroscopic objects. Such behaviour is described by classical physics.

To find out whether or not the uncertainty principle extends up to the macroscopic world, Schwab and colleagues studied the motion of a vibrating mechanical arm made from silicon nitride. At just 8 microns (8x10-6m) long, the arm is tiny by everyday standards but still macroscopic (having the mass equivalent to 1012 hydrogen atoms).

The researchers positioned the arm about 600 nanometres away from a single-electron transistor - which acts as a motion detector - and coupled the two together via a capacitor. They then applied a voltage to make the arm vibrate and cooled the system down to a few millikelvin. Cooling the system to such low temperatures reduced thermal vibrations close to the point where just "zero-point" quantum fluctuations remain. This zero-point motion results from the uncertainty principle, which prevents the arm from remaining completely at rest.

As the arm moved towards the detector, and then away from it, the amount of current flowing through the transistor changed. By measuring this current, the physicists were able to measure the displacement of the arm with a sensitivity that is only about a factor of 4.3 larger than the amplitude of zero-point fluctuations.

The NSA physicists now plan to increase the sensitivity of the detector and further reduce thermal vibrations in the arm. They also hope to extend their study to larger objects. "These experiments address a deep mystery in physics: where does the quantum world stop and the classical world begin?" Schwab told. "Success at manipulating the quantum state of a mechanical device would suggest that there is no boundary and encourage us to pursue even larger objects."

Schwab says his team would like to exploit the system for quantum computing applications.

Explore further: A stretchy mesh heater for sore muscles

Related Stories

Scientific instruments of Rosetta's Philae lander

Sep 23, 2014

When traveling to far off lands, one packs carefully. What you carry must be comprehensive but not so much that it is a burden. And once you arrive, you must be prepared to do something extraordinary to make ...

Recommended for you

A stretchy mesh heater for sore muscles

Jul 03, 2015

If you suffer from chronic muscle pain a doctor will likely recommend for you to apply heat to the injury. But how do you effectively wrap that heat around a joint? Korean Scientists at the Center for Nanoparticle ...

Polymer mold makes perfect silicon nanostructures

Jul 03, 2015

Using molds to shape things is as old as humanity. In the Bronze Age, the copper-tin alloy was melted and cast into weapons in ceramic molds. Today, injection and extrusion molding shape hot liquids into ...

Better memory with faster lasers

Jul 02, 2015

DVDs and Blu-ray disks contain so-called phase-change materials that morph from one atomic state to another after being struck with pulses of laser light, with data "recorded" in those two atomic states. ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.